博士論文

『演算的設計手法 その有為性』

東京藝術大学大学院
美術研究科 美術専攻
建築研究領域

砂山太一

2015 年
博士論文 2015年
『演算的設計手法 その有為性』
東京藝術大学大学院 美術研究科 美術専攻 建築研究領域
砂山 太一

【要旨】

本研究は、コンピュータプログラミングを用いた設計手法を取り扱っている。
コンピュータプログラミングを用いた設計手法とは一般的にコンピューターショナル・デザインと呼ばれ、数値変数や手続き操作によって形状を決定していく手法のことを指す。この手法は、情報化機器や数値制御のデジタル加工機など物質的生産性と情報技術を結びつけるテクノロジーが急速に一般化しつつある現在、デジタルデータをより高精度に扱う方法として設計領域を中心に活用が進んでいる。

本研究は、情報を媒体として設計技術と生産技術がひと続きのプロセスに統合されつつある状況下において、情報的次元と物質的次元の横断性に着目しつつ《演算的設計手法》の有為性を提起し、実制作を通じてその意味を検証することを目的としている。

情報技術の発展を、技術発展史的な合目的的価値観の言及に留まらず、人間の創造性に関わる問題と受け止め、コンピュータを用いた設計のより有為的な機微の立証を目指す。また、本研究論文と博士作品は共に一組の研究として捉えられ、本研究論文は博士制作研究の技法的側面を説明するものと位置づける。

本研究は大きく2つのパートから構成される。
一つは本研究が前提する《演算的設計手法》に関する背景整理・概念の説明、残り一つは、博士制作研究に関するより具体的なプロセス説明である。

一つ目の背景整理・概念の説明は第1章から第2章にかけておこなっている。計算機を使用した設計の歴史と背景および用語的定義を整理し、本研究が採用する《演算的設計手法》の定義付けを行う。コンピュータ支援型の設計手法および生産技術＝CAD/CAMなどの歴史説明および現在の技術的状況説明をはじめとして、コンピューターショナルデザインにおいて前提となるコンピュータの特質、計算と演算の語句的な定義の違いについての吟味を試みている。またコンピューターショナル・デザイン的基本的修辞となる用語解説をおこなっている。以上のことを検証した上で、《演算的設計手法》を設計行為の客体的運用＝演算として定義し、制作研究への導入をしている。

第3章および続く第4章では、博士制作研究に関わる作品の具体的なプロセス解説として、空間充填形と双対グラフを用いた造形物設計の研究について説明している。前章までが、本研究で取り扱う方法論の概念整理として機能しているのに対して、この第3章より、博士作品の設計・制作に直接関係した研究を展開している。具体的には、オクステットトラス空間充填形をベースに、その双対関係にあるグラフを軸線とした構造体の開発研究をおこなっている。オクステットトラスは全ての面が三角形によって構成されているため、形状変形を与えるために、常に平らな面のみで構成される非常に安定性の高い空間充填形である。その特徴を活かし、より設計者が自由度の高い設計手法をプログラミングとデジタル加工技術を介して実装している。構築物制作のための材料変数として面材と線材この2つの展開に分けて作品制作をおこなった。博士制作作品では、研究において展開された方法論の一つの帰結点として、角材による構築物制作をおこなった。

本研究において、演算的な思考に裏付けされた形態発見法および、高度な情報技術に根ざした設計手法を開発した。成果物として制作される一連の作品は、システムベースの手法がもたらす新たな価値の発見や作品的意図と技術的に裏打ちされた合目的性の帰着点を提示し、情報技術の時代における物質的表現の新たな可能性を示すことを目指した。
【第1章】
序論 ... 9
1.1 はじめに ... 9
 1.2.1 脱産業化社会 ... 10
 1.2.2 情報技術時代の物質的創造性 11
 1.2.4 コンピューターショナル・デザイン 12
1.2 本研究の目的 ... 13
 1.2.1 問い .. 14
1.3 既往研究との関係 ... 15
1.4 本研究の構成 ... 17

【第2章】
演算的設計手法について ... 21
 2.1 概要 ... 21
 2.2 コンピュータと設計・生産 21
 2.2.1 CAD .. 22
 2.2.2 CAM .. 23
 2.2.3 CAD/CAMの現在 .. 24
 2.3 コンピュータの特質 ... 25
 2.3.1 拡張された身体としてのコンピュータ 25
 2.3.2 計算と演算について 28
 2.4 用語 ... 30
 2.4.1 手続き | Algorithmic 30
 2.4.2 数値変数 | Parametric 32
 2.4.3 生成 | Generative 34
 2.4.4 反復 | Iteration 35
 2.4.5 オブジェクト | Object 38
 2.5 研究への導入 ... 40

【第3章】
アルゴリズムの開発 ... 43
 3.1 研究の概要 ... 43
 3.2 スクリプト・幾何学・設計 44
SIGNIFICANCE OF ALGORITHMIC DESIGN METHOD
演算的設計手法 その有為性

3.2.1 スクリプト言語と幾何学 ... 44
3.2.2 演算学と設計の関係性 .. 45
3.2.3 形態生成としての設計概念 47

3.3 スクリプト言語を用いた幾何学的設計手法の開発 50
3.3.1 空間充填形アルゴリズム開発 52
 3.3.1.1 多面体 ... 53
 3.3.1.2 空間充填形 ... 55
 3.3.1.3 オクテット・トラス 56
 3.3.1.4 オクテットトラスの生成アルゴリズム 57
3.3.2 形状制御アルゴリズムの研究 58
 3.3.2.1 フォーム・ファインディング 58
 3.3.2.2 NURBS 制御 ... 60
 3.3.2.3 形状制御プロセスのアルゴリズム化 61
3.3.3 双対生成アルゴリズムの研究 62
 3.3.3.1 グラフ ... 62
 3.3.3.2 双対グラフ ... 63

【第4章】
制作研究 ... 65
4.1 概要 ... 65
4.2 面材による展開 .. 66
 4.2.1 双対グラフを軸線にしたパネル部材の生成アルゴリズム 66
 4.2.2 双対グラフを軸線にした接合部材の生成アルゴリズム 68
 4.2.3 作品『ephemeral depth』(2013) 70
 4.2.4 作品『Lowlife』(2014) 76
 4.2.4.1 物理現象・設計・コンピュータ 78
 4.2.4.2 外心が三角形の外に出るケースの解決法 80
 4.2.4.3 作品『LowLife』制作プロセス 82
4.3 線材による展開 .. 88
 4.3.1 概要 ... 88
 4.3.2 ばらつきのある角材の軸を連続させること 90
【目次】

【第5章】
終章 95
5.1 各章のまとめ .. 95

【参考文献表】 .. 100

【図版表】 .. 106
SIGNIFICANCE OF AGORITHMIC DESIGN METHOD
演算的設計手法　その有為性
第1章 序論
【第1章】
序論

1.1 はじめに
【第1章】 序論

1.2 情報技術の時代

1.2.1 脱産業化社会
1.2.2 情報技術時代の物質的創造性
1.2.4 コンピュテーションナル・デザイン
1.2 本研究の目的
1.2.1 問い
1.3 既往研究との関係
【第 1 章】 序論
1.4 本研究の構成

本研究の構成は次のとおりである。

まず、第1章では序論として、背景整理、本研究の目的、既往研究との関係性、および本研究の構成を述べる。背景整理では、脱工業化と呼ばれる現在の社会的状況、情報を営みとした物質的生産性の変容および、本研究が前提としているコンピューターショナル・デザインを概説する。本研究の目的では、どのような目的をもって、またどのような視点でコンピューターショナル・デザイン研究領域内で研究を進めていくのか明確にする。既往研究と関係では、欧米を中心としたコンピューターショナル・デザイン研究の例をあげ、現在どの同様な状況にあるかを概説する。本研究の構成では、各章ごとの構成をまとめる。

第2章では、本研究の前提となる計算機を使用した設計の歴史と背景および用語的定義を整理する。まず、コンピュータ支援型の設計手法および生産技術＝CAD/CAMなどの歴史説明および、現在の技術的状況説明をおこなう。次にコンピュータの特質を明らかにし、人間との関わりや、コンピュータの内部で行われている計算と演算について述べる。その後、コンピューターショナル・デザイン領域で主に使用されている概念的・技術的用語の定義および、それらが人間の創作とどのように関わりがあるかを説明する。本章の最後では、上記のことを背景とするコンピューターショナル・デザインの、一つの概念的ないしは技術的な考え方として、設計＝対象化行為の設定と運用＝演算として捉え、《演算的設計手法》を定義し、制作研究への導入とする。

第3章では、アルゴリズムを用いた幾何学の技法的展開としての空間充填形と双対グラフを用いた造形物設計の研究について説明する。この3章より、より博士作品制作を考慮した研究が展開される。まず、スクリプト言語と幾何学と設計および形態生成の関係性を述べる。次により具体的に、本研究の技法面について述べる。本研究の技法研究として核となるオクテットトラスと双対グラフを用いた構造体設計について説明する。それら研究をスクリプト言語によって記述するアルゴリズムプロセスの開発研究について説明する。

第4章では、第3章で開発したアルゴリズムをベースに作品制作研究をおこなう。博士制作研究としておこなった3つの作品を取り上げ、そのプロセスを具体的に説明
する。

最後に第5章において、各章のまとめをおこない、実験制作と作品制作をとおして導き出された今後の課題を述べる。
SIGNIFICANCE OF AGORITHMIC DESIGN METHOD
演算的設計手法 その有為性
【第2章】演算的設計手法について
【第2章】
演算的設計手法について

2.1 概要

2.2 コンピュータと設計・生産
【第2章】演算的設計手法について

2.2.1 CAD
2.2.2 CAM
2.2.3 CAD/CAM の現在
2.3 コンピュータの特質

2.3.1 拡張された身体としてのコンピュータ
【第2章】 演算的設計手法について
【第2章】 演算的設計手法について

2.3.2 計算と演算について
2.4 用語

2.4.1 手続き | Algorithmic
SIGNIFICANCE OF AGORITHMIC DESIGN METHOD
演算的設計手法 その有為性
2.4.2 数値変数 | Parametric
SIGNIFICANCE OF ALGORITHMIC DESIGN METHOD
演算的設計手法 その有為性
2.4.3 生成 | Generative
2.4.4 反復 | Iteration
【第2章】 演算的設計手法について

【Fig.3】 サーフェイスを分割して、分割点からあらゆるジオメトリを作成する研究
SIGNIFICANCE OF AGORITMIC DESIGN METHOD
演算的設計手法 その有為性

operation
- get axis line
- draw sphere
centroid + mid point of axis
radius + length of axis + optional scale factor
- generate random points on sphere
(random number = optional)
- draw planes from points and normals to
sphere on each point
- offset planes
offset distance = initial length + scale factor
- create solid form planes

[Fig. 4] 再帰的に反復する枝分かれのアルゴリズムに多角形や球体の集合を割り当てて形態創
成をおこなった研究

- 37 -
【第２章】演算的設計手法について

2.4.5 オブジェクト | Object
第2章 演算的手法について

2.5 研究への導入
SIGNIFICANCE OF ALGORITHM DESIGN METHOD
演算的設計手法 その有為性

...
【第3章】アルゴリズムの開発
【第3章】
アルゴリズムの開発

3.1 研究の概要

メソッド:

<table>
<thead>
<tr>
<th>空間充填形</th>
<th>目的形状を描画していくための作業空間インデックスの設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>制御・形状探索</td>
<td>内部の目的形状を追跡させるための作業空間の変形</td>
</tr>
<tr>
<td>双対グラフ</td>
<td>目的形状を描画するための三角形双対グラフの生成</td>
</tr>
</tbody>
</table>

第3章

第4章

[図5] 開発したアルゴリズムと博士制作作品との関連性
3.2 スクリプト・幾何学・設計

3.2.1 スクリプト言語と幾何学
3.2.2 幾何学と設計の関係性

SIGNIFICANCE OF AGORITHMIC DESIGN METHOD
演算的設計手法 その有為性
【第3章】アルゴリズムの開発
3.2.3 形態生成としての設計概念
【第3章】アルゴリズムの開発
3.3 スクリプト言語を用いた幾何学的设计手法の開発
3.3.1 空間充填形アルゴリズム開発
3.3.1.1 多面体
第3章 アルゴリズムの開発
3.3.1.2 空間充填形
【第3章】アルゴリズムの開発

3.3.1.3 オクテット・トラス

[図8] オクテットトラス
3.3.1.4 オクテットトラスの生成アルゴリズム

[図9] オクテットトラスの生成アルゴリズムフローチャート
3.3.2 形状制御アルゴリズムの研究

[Fig.10] オクテットトラスの変形
SIGNIFICANCE OF AGORITHMIC DESIGN METHOD
演算的設計手法 その有為性

[Text continues on the page]
3.3.2.2 NURBS 制御

【第3章】アルゴリズムの開発

Fig.11 NURBS を用いた面形状の制御
3.3.2.3 形状制御プロセスのアルゴリズム化

オクテットトラスはすべての面が三角形で構成されるため、充填形内に歪んだ面形状が一切現出しないながらも、このように、全体的にはスムーズな自由形状が生成できる。
3.3.3 双対生成アルゴリズムの研究

3.3.3.1 グラフ

[図13] グラフ理論における多角形
3.3.3.2 雙対グラフ

![Fig.14] 2次元ポロイ図と2次元ドロネー図の双対
第四章 制作研究
【第4章】
制作研究

4.1 概要
4.2 面材による展開

4.2.1 双対グラフを軸線にしたパネル部材の生成アルゴリズム
4.2.2 双対グラフを軸線にした接合部材の生成アルゴリズム
SIGNIFICANCE OF AGORITHMIC DESIGN METHOD
演算的設計手法 その有為性
4.2.3 作品『ephemeral depth』(2013)
SIGNIFICANCE OF ALGORITHMIC DESIGN METHOD
演算的設計手法 その有為性
SIGNIFICANCE OF ALGORITHMIC DESIGN METHOD
演算的設計手法 その有為性
【第 4 章】制作研究
SIGNIFICANCE OF ALGORITHMIC DESIGN METHOD
演算的設計手法 その後有為性
4.2.4 作品『Lowlife』(2014)
SIGNIFICANCE OF AGORITHMIC DESIGN METHOD
演算法則的手法 その有為性

[Fig.28] 作品「Lowlife」(2014)

作品「Lowlife」は、Cité internationale universitaire de Paris（パリ国際大学都市）にある Fondation Suisse（スイス会館）と在仏日本大使館によるスイス日本国交 150周年を記念したシリーズ展覧会の一貫として行われた企画展「Golem a la Fondation Suisse」(2014/9-2014/10)の中で展示された。本作品の設置は「スイス会館」(ル・コルビュジエ設計)内における、コルビュジエ設計そのままの姿が残されている一室『Chambre de Patrimoine』でおこなわれた。
4.2.4.1 物理現象・設計・コンピュータ
SIGNIFICANCE OF AGORITHMIC DESIGN METHOD
演算的設計手法 その有為性
4.2.4.2 外心が三角形の外に出るケースの解決法
4.2.4.3 作品『LowLife』制作プロセス
【第 4 章】制作研究
【第4章】制作研究
SIGNIFICANCE OF AGORITHMIC DESIGN METHOD
演算的設計手法 その有為性

Fig. 36] 作品『Lowlife』展示風景
4.3 線材による展開

4.3.1 概要
これまでの性先う研究と同様に，ghPythonを使用して，[1] - [5] までのプロセスをすべて自動で行えるようにプログラミングした。

常に角材の切断加工を垂直方向のみで行える。これにより部材加工における生産性および組み立てにおける効率性をもたらしている。ケガキ線にしたがって切断したのち，各々の材を空間インデックスにしたがって接合する。接合はビス留めで行い，各接合面に対して1本で留めている。
4.3.2 ばらつきのある角材の軸を連続させること

博士審査展出作品『角材の軸を連続させる』では杉荒角材45mmを使用した。オクテットトラスを構成する三角形の軸線に対して角材を配置する手法は、軸線によって幾何学的形状が定義されていることから、角材の外形にある程度のばらつきがあった場合も、施工における全体形状の制御が担保しうる。本制作作品では使用した杉荒角材には2～3mmの寸法誤差（45mmの場合、材によって45mm程度から48mm程度とばらつきがある）があるが、そのように敢えてばらつきのある木材を採用することで、オクテットトラスの対角グラフを軸線とする線材を用いた幾何構造体の特徴を強く表しうると考えた。

【第4章】制作研究

Fig.39 作品『角材の軸を連続させる』45mm～48mm程度ではらつきがある。
【第 4 章】制作研究
全体形状は建築物スケールをもった構造体の一部とみた形で構想した。構造的強度や施工実験として作品制作をおこなった。

荒角材のはらつきが接合部分において大きな施工誤差を生む一方で、軸によってジョイントが定義されているため、多少の誤差を吸収しながら全体形状が成立する。
【第5章】 終章
【第5章】
総章

5.1 各章のまとめ

第1章では序論として、「背景整理」「本研究の目的」「既往研究との関係性」および「本研究の構成」を説明した。

背景整理では、情報技術が定着し脱工業化社会と呼ばれる現在の社会的状況について説明し、情報革命がもたらした新たな産業構造を示した。また、近代における基本的な科学概念であるシステム思考について説明し、建築をはじめとした芸術領域との相補的な関係性について述べた。また設計（デザイン）と技術（テクノロジー）の関係性において、現在到まるまでの設計領域における物質的生産性の変容について説明しその意味を吟味することを試みた。

本研究は建築設計計画において計算機ないしは計算技術を応用したコンピューターショナル・デザイン研究領域を軸に展開している。「本研究の目的」では、どのような目的をもって、またどのような視点で、コンピューターショナル・デザイン研究領域内で研究を進めていくのかを定義させることを試みた。コンピューターショナル・デザインが内包する知見が、設計計画のみならず様々な専門領域に対して、横断的にその可能性を開いていることに触れた。その中で、本研究で採用している《演算的設計手法》が定義する所を論じ、本研究が設計におけるコンピューターショナルの活用に対して、合目的的な発展可能性ではなくむしろ自己言及的な思考の現れとして、デザインのより有為的な機微の検証を目指すものであるとした。

「既往研究との関係性」では、欧米を中心としたコンピューターショナル・デザイン研究の流れを挙げ概説した。2000年以降のデジタルカルチャーの拡大が設計における技術論的な関心を中心に語られてきたことを示し、制作論的な考察を試みる本研究が既往研究を参照しながらも、作品制作という造形行為に指向した研究であることを説明した。

第2章では、本研究の前提となる計算機ないしは計算技術を使用した設計の歴史と背景および用語の定義を整理し、実制作に繋がる概念説明をおこなった。
第5章 終章

本研究では、研究の骨子として、プログラミングによるアルゴリズム構築を手法として採用している。その手法が、どのような背景に裏付けされたのものなのかを明確にするために、より具体的な背景整理として、コンピュータ支援型の設計手法および生産技術＝CAD/CAMの歴史説明および現在の技術的状況説明をおこなった。CAD/CAMの開発は共に1950年代から始まり今なお発展の途にある。それらの歴史的概観を展望した後、デジタルを介した設計・生産の今日的状況を説明した。

次に、コンピューターショナルデザインにおいて前提となるコンピュータの特質について述べた。コンピュータの基本機能と言われる入力・記憶・制御・演算・出力については、それらがどのように人間の身体性に関わりを示しているのかを説明した。メディア論に従って人間が利用する道具はすべて身体の拡張として機能しているとして、ただの事務機器としてではなく、より人間の身体や思考へと創造性に密接に関係したコンピュータの有り方を示した。

次に計算と演算の語義的な定義の違いについて説明した。辞書的定義では計算とは演算した結果であるとされ、演算とは計算をする行為であるとされる。設計行為の中に思考の対象化という面で《演算的》な働きがあることを認め、設計行為の結果ではなく、設計行為そのものの自体に本研究は着目している。

またコンピューターショナル・デザインの基本的修辞となる用語解説をおこない、演算的設計手法の概念的および技術的な意味での人間の創造行為との関わりについて事例を用いて説明した。設計行為の設定と運用＝演算として捉え、《対象化》の道筋として《演算的設計手法》を定義し制作研究への導入を示した。

計算と演算の定義付けにおいても見られたように、コンピュータは現在計算機という「結果をはじき出す機械」としてよりもむしろ、常に身近にあり人の創造性を拡張するための装置として働いている。《対象化》された身体性や思考とのフィードバックによってもたらされる創造的な活動そのもの自体を設計するところ、つまりは設計＝対象化行為の設定と運用をして実制作に繋がる手法と捉えるとした。

第3章では、演算的設計手法の技法的展開として空間充填形と双対グラフを用いた造形物設計の研究について説明した。前章までが本研究の概念整理として機能しているのに対して、この第3章より、より博士作品制作に特化した研究を展開した。

まず、博士作品制作における基本的な道具立ての一つとなるスクリプト言語と幾何学、設計について述べた。幾何学の記述は、数式なしその定規やコンパスなどを用いた図学的技法によって表現されてきたと説き、一方で、近年においてはCADなどに代表されるように、幾何学を演算的に視覚化するシステムはコンピュータ内部に実装
されており、使用者は数値変数を与えるのみで複雑な幾何形状が操作できるようになったと述べた。また簡単プログラミング言語であるスクリプト言語は、それら形状操作を一連の手続きとして記述し、設計者はより高度な幾何形状を視覚とのフィードバックを介して設計していくことができることを説明した。

また同時に、幾何学・スクリプト言語・設計を包含するような立場で、建築における「生成」の概念について述べた。「計画」とはおそらく区別される設計を「生成」として捉える視点は、生態学の形態形成との関連が多く指摘されることを示し、そのような記述的な手続き手法を用いて、生物の成長の様に形状を操作できる時代であるとした上で、より創造的な設計においては、ただの生態学的アルゴリズムの援用ではない独自の生成の図式が必要であるとした。

次に博士作品制作にかかるスクリプト言語を用いた幾何学的設計手法の研究をおこなった。

まず、研究を始めるにあたって博士作品制作の設計における手法プロセスを大きく三段階に分けて論じた。

①空間充填形の研究
形態を生成する作業空間インデックスとして四面体と八面体によって構成される空間充填形であるオクテットトラスを採用しそのアルゴリズムを開発をこなった。オクテットトラスの前提となる多面体などの概念説明を通し空間充填形についての理解を深めた。

②形状制御の研究
オクテットトラスベースとする作業空間インデックスを変形するための、形状制御アルゴリズムについて述べた。ここではそのベーシックな手法として、NURBS を用いた制御の研究とアルゴリズムを開発をこなった。

③対等グラフ生成の研究
オクテットトラスを構成する三角形状の対等グラフを生成することによって、空間を充填しながらも、連続的に接続可能な構造体の研究およびアルゴリズムを開発をこなった。

第 4 章では、第 3 章のアルゴリズム研究を基軸として制作した 3 つの作品について説明した。第 3 章で得たオクテットトラスの 3 次元的対等グラフの軸線を構造体を構成する部材形状への初期入力値として取り扱い、そこから面材形状への適応および線材への適応の 2 つに展開した。面材形状への適応では、実作を例に挙げ、主に「ephemeral depth」(2013) と「lowlife」(2014) の 2 作品を取り上げた。オクテットトラス
ラスの3次元双対グラフにおける軸線同士が、隣接しあう三角形同士を常に直交関係に結ぶという特性を利用して、軸線を元にしたパネル部材生成、面材同士を直交相欠きでつなぐ接合部材生成を行うアルゴリズムを開発した。また後者の「lowlife」(2014)では前者「ephemeral depth」では解決できていなかった問題点を解決したより汎用性の高いアルゴリズムを実現した。

次にオクテットトラスの3次元的双対グラフの軸線を線材に適応する展開可能性を示した。この展開法は、博士審査展出品作品「角材の軸を連続させる」において結実させることを目的とした。

自身の制作を通して、演算的設計手法の有為性を考察することを動機に、様々な制作・研究を行ってきた。本研究論文において展開した幾つかの考察は、自身が抱えたあらゆる疑問点に対する一様の回答的試みであるといえる。

物を作ること、ひいては物作りを通して「他者」と対話することは、情報と物質の境界が曖昧になっている現在において、より多義的な価値を創出する最も有効な手段であると捉え、博士制作で実現しうるそれを結論に代えて結ぶ。
SIGNIFICANCE OF AGORITHMIC DESIGN METHOD
演算的設計手法 その有為性

[fig.46] 作品『lowlife#2』, 撮影：来田猛
<table>
<thead>
<tr>
<th>参考文献表</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Balmond, Cecil. セシル・バルモンド. エー・アンド・ユー, 2006. (a+u: 建築と都市)</td>
</tr>
<tr>
<td>(3) Benjamin, Walter. 久保哲司. 図説写真小史. 筑摩書房, 1998. (ちくま学芸文庫)</td>
</tr>
</tbody>
</table>

(27) 久保田晃弘. (第19回) 「メディアアート」を再発表するための五つの方法 (メディアアート...

（36） 三井秀樹. メディアと芸術. 集英社, 2002. ISBN408720152X.

(42) 松倉保夫. ガウディの設計態度. 相模書房. 1978.

(64) 柄沢祐輔, 田中浩也, Chen, Dominick, 藤村隆至, 松川昌平. 設計の設計: 「建築・空間・情報」制作の方法. INAX 出版, 2011. ISBN9784872751703.
SIGNIFICANCE OF AGORITHMIC DESIGN METHOD
演算的設計手法 その有為性

図版表

<table>
<thead>
<tr>
<th>図版番号</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>[fig.1]</td>
<td>研究の目的概要</td>
</tr>
<tr>
<td>[fig.2]</td>
<td>椅子の要素集合と数値変数</td>
</tr>
<tr>
<td>[fig.3]</td>
<td>サーフェイスを分割して、分割点からあらゆるジオメトリを作成する研究</td>
</tr>
<tr>
<td>[fig.4]</td>
<td>再帰的に反復する枝分かれのアルゴリズムに多角形や球体の集合を割り当てて形態創成をおこなった研究</td>
</tr>
<tr>
<td>[fig.5]</td>
<td>開発したアルゴリズムと博士制作作品との関連性</td>
</tr>
<tr>
<td>[fig.6]</td>
<td>5つのプラトンの立体</td>
</tr>
<tr>
<td>[fig.7]</td>
<td>プラトンの立体の対称性</td>
</tr>
<tr>
<td>[fig.8]</td>
<td>オクテットトラス</td>
</tr>
<tr>
<td>[fig.9]</td>
<td>オクテットトラスの生成アルゴリズムフローチャート</td>
</tr>
<tr>
<td>[fig.10]</td>
<td>オクテットトラスの変形</td>
</tr>
<tr>
<td>[fig.11]</td>
<td>NURBS を用いた面形状の制御</td>
</tr>
<tr>
<td>[fig.12]</td>
<td>形状制御プロセスアルゴリズムプロセス</td>
</tr>
<tr>
<td>[fig.13]</td>
<td>グラフ理論における多角形</td>
</tr>
<tr>
<td>[fig.14]</td>
<td>2 次元ポロノイ図と 2 次元ドロネー図の対称</td>
</tr>
<tr>
<td>[fig.15]</td>
<td>反対グラフを軸線にしたパネル部材の生成アルゴリズムプロセス</td>
</tr>
<tr>
<td>[fig.16]</td>
<td>オクテットトラスの反対グラフ（部分）</td>
</tr>
<tr>
<td>[fig.17]</td>
<td>反対グラフを軸線にした接合部材の生成アルゴリズムプロセス</td>
</tr>
<tr>
<td>[fig.18]</td>
<td>反対グラフを軸線にした接合部材の生成アルゴリズムの適用例</td>
</tr>
<tr>
<td>[fig.19]</td>
<td>作品『ephemeral depth』ノード図</td>
</tr>
<tr>
<td>[fig.20]</td>
<td>作品『ephemeral depth』Python で組んだコンポーネント</td>
</tr>
<tr>
<td>[fig.21]</td>
<td>作品『ephemeral depth』パターンスタディー</td>
</tr>
<tr>
<td>[fig.22]</td>
<td>作品『ephemeral depth』カットデータ</td>
</tr>
<tr>
<td>[fig.23]</td>
<td>作品『ephemeral depth』レーザー加工と NC 切削による実験</td>
</tr>
<tr>
<td>[fig.24]</td>
<td>作品『ephemeral depth』組み立て</td>
</tr>
<tr>
<td>[fig.25]</td>
<td>作品『ephemeral depts』作品写真</td>
</tr>
<tr>
<td>[fig.26]</td>
<td>作品『ephemeral depts』作品写真（拡大）</td>
</tr>
<tr>
<td>[fig.27]</td>
<td>作品『ephemeral depts』作品写真</td>
</tr>
</tbody>
</table>
SIGNIFICANCE OF AGORITHMIC DESIGN METHOD
演算的設計手法 その有為性

[fig.28] 作品『Lowlife』(2014) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 77
[fig.29] 本制作のためにおこなったケーススタディ. ・・・・・・・・・・・・・・・・・・・ 79
[fig.30] 双対グラフのパネル生成に関する、外心が三角形の外に出るケースの解決法 ・・・・ 81
[fig.31] 作品『LowLife』プロセスキアグラム ・・・・・・・・・・・・・・・・・・・・・・・ 83
[fig.32] 作品『Lowlife』部分モックアップ、厚紙1.6mm ・・・・・・・・・・・・・・・・・・・ 84
[fig.33] 作品『Lowlife』切り出したパネルおよび輸送のためのパッケージング ・・・・・・・・ 84
[fig.34] 作品『Lowlife』制作風景 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 85
[fig.35] 作品『Lowlife』制作補助プログラム ・・・・・・・・・・・・・・・・・・・・・・・ 86
[fig.36] 作品『Lowlife』展示風景 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 87
[fig.37] 作品『角材の軸を連続させる』線材生成のアルゴリズム ・・・・・・・・・・・・・・・ 89
[fig.38] 作品『角材の軸を連続させる』切断の方向性と接合のダイアグラム ・・・・・・・・・・・ 89
[fig.39] 作品『角材の軸を連続させる』45mm ～ 48mm 程度でばらつきがある. ・・・・・・・ 90
[fig.40] 作品『角材の軸を連続させる』レーザー加工機によるケガキ作業 1 ・・・・・・・・ 91
[fig.41] 作品『角材の軸を連続させる』レーザー加工機によるケガキ作業 2 ・・・・・・・・ 91
[fig.42] 作品『角材の軸を連続させる』2つの側面にケガキ線を入れる. ・・・・・・・・・・・ 92
[fig.43] 作品『角材の軸を連続させる』全体形状を8個の部分に分けて組み立てる. ・・・・ 92
[fig.44] 作品『角材の軸を連続させる』展示風景_全体 ・・・・・・・・・・・・・・・・・・・ 93
[fig.45] 作品『角材の軸を連続させる』展示風景 ・・・・・・・・・・・・・・・・・・・・・・・ 93
[fig.46] 作品『lowlife#2』撮影：来田猛 ・・・・・・・・・・・・・・・・・・・・・・・・ 99

※特記なきはすべて筆者作成